本書是“矩陣論”課程的學習指導(dǎo)書,其目的是幫助讀者理解、領(lǐng)悟矩陣論的主要內(nèi)容;有針對性地解決學習中的困難;較好地完成學習任務(wù)。
本書從復(fù)習概念、定理出發(fā),全面介紹各種解題方法,并通過對460多個問題(包括習題、例題、自測試題及綜合測試題)詳細地解析,做到了有分析、有解法、有評注、有總結(jié),使讀者學會證明重要的或常見的結(jié)論,掌握解題技巧和常用運算方法,是讀者學好“矩陣論”課程的良師益友。
本指導(dǎo)書的體系與電子工業(yè)出版社出版的教材《矩陣理論與方法(第二版)》相同。該教材的第一版被評為“北京高等教育精品教材”。
本指導(dǎo)書不僅適合使用上述教材的研究生、本科生配套學習,而且對所有學習“矩陣論”的研究生、本科生、工程技術(shù)人員以及從事“矩陣論”教學的教師都有很好的學習、參考價值。
吳昌愨,30多年從事高校數(shù)學基礎(chǔ)課教學,先后在北京航空航天大學、北京信息科技大學等高校任教。講授過高等數(shù)學、空間解析幾何引論、微分方程、運籌學、高等代數(shù)、線性代數(shù)等多學時課程,并多年承擔“矩陣理論及其應(yīng)用”選修課教學。
第1章 線性空間與線性變換
1.1 內(nèi)容提要
1.2 基本教學要求
1.3 概念、結(jié)論與相關(guān)說明
1.3.1 線性空間
1.3.2 基、維數(shù)與坐標
1.3.3 基變換與坐標變換
1.3.4 線性子空間
1.3.5 子空間的交與和
1.3.6 子空間的直和與補子空間
1.3.7 線性變換
1.3.8 線性變換的矩陣表示
1.3.9 線性映射的矩陣表示
1.3.10 線性變換的值域與核
1.3.11 線性變換的不變子空間 第1章 線性空間與線性變換
1.1 內(nèi)容提要
1.2 基本教學要求
1.3 概念、結(jié)論與相關(guān)說明
1.3.1 線性空間
1.3.2 基、維數(shù)與坐標
1.3.3 基變換與坐標變換
1.3.4 線性子空間
1.3.5 子空間的交與和
1.3.6 子空間的直和與補子空間
1.3.7 線性變換
1.3.8 線性變換的矩陣表示
1.3.9 線性映射的矩陣表示
1.3.10 線性變換的值域與核
1.3.11 線性變換的不變子空間
1.3.12 內(nèi)積與歐氏空間
1.3.13 標準正交基
1.3.14 酉空間
1.4 解題方法指導(dǎo)
1.5 內(nèi)容結(jié)構(gòu)框圖
1.6 典型題剖析
1.7 答疑解惑
1.8 《教材》習題全解
1.9 自測試題及解答
自測試題一
自測試題一解答
自測試題二
自測題二解答
第2章 矩陣的相似標準形
2.1 內(nèi)容提要
2.2 基本教學要求
2.3 概念、結(jié)論與相關(guān)說明
2.3.1 相似矩陣
2.3.2 λ ?矩陣及其標準形
2.3.3 不變因子和初等因子
2.3.4 ?Jordan?標準形
2.4 解題方法指導(dǎo)
2.5 內(nèi)容結(jié)構(gòu)框圖
2.6 典型題剖析
2.7 答疑解惑
2.8 《教材》習題全解
2.9 自測試題及解答
自測試題一
自測試題一解答
自測試題二
自測試題二解答
第3章 矩陣分解
3.1 內(nèi)容提要
3.2 基本教學要求
3.3 概念、結(jié)論與相關(guān)說明
3.3.1 矩陣的三角分解
3.3.2 矩陣的QR 分解
3.3.3 矩陣的滿秩分解
3.3.4 矩陣的奇異值分解
3.3.5 矩陣的譜分解
3.4 解題方法指導(dǎo)
3.5 內(nèi)容結(jié)構(gòu)框圖
3.6 典型題剖析
3.7 答疑解惑
3.8 《教材》習題全解
3.9 自測試題及解答
自測試題一
自測試題一解答
自測試題二
自測試題二解答
第4章 矩陣函數(shù)與范數(shù)理論
4.1 內(nèi)容提要
4.2 基本教學要求
4.3 概念、結(jié)論與相關(guān)說明
4.3.1 矩陣多項式
4.3.2 最小多項式
4.3.3 矩陣函數(shù)
4.3.4 向量范數(shù)
4.3.5 矩陣范數(shù)
4.3.6 向量范數(shù)與矩陣范數(shù)的關(guān)系
4.4 解題方法指導(dǎo)
4.5 內(nèi)容結(jié)構(gòu)框圖
4.6 典型題剖析
4.7 答疑解惑
4.8 《教材》習題全解
4.9 自測試題及解答
自測試題一
自測試題一解答
自測試題二
自測試題二解答
第5章 矩陣分析
5.1 內(nèi)容提要
5.2 基本數(shù)學要求
5.3 概念、結(jié)論與相關(guān)說明
5.3.1 向量序列斂散性
5.3.2 矩陣序列的斂散性
5.3.3 方陣冪收斂
5.3.4 函數(shù)矩陣
5.3.5 函數(shù)矩陣的極限與連續(xù)
5.3.6 函數(shù)矩陣的導(dǎo)數(shù)
5.3.7 純量函數(shù)對向量變量與對矩陣變量的導(dǎo)數(shù)
5.3.8 函數(shù)矩陣對矩陣變量的導(dǎo)數(shù)
5.3.9 函數(shù)矩陣的積分
5.4 解題方法指導(dǎo)
5.5 內(nèi)容結(jié)構(gòu)框圖
5.6 典型題剖析
5.7 答疑解惑
5.8 《教材》習題全解
5.9 自測試題及解答
自測試題一
自測試題一解答
自測試題二
自測試題二解答
第6章 矩陣級數(shù)
6.1 內(nèi)容提要
6.2 基本教學要求
6.3 概念、結(jié)論與相關(guān)說明
6.3.1 矩陣級數(shù)的概念
6.3.2 矩陣級數(shù)的收斂性
6.3.3 矩陣級數(shù)的絕對收斂性
6.3.4 收斂的矩陣級數(shù)的基本性質(zhì)
6.3.5 矩陣冪級數(shù)
6.3.6 Neumann級數(shù)
6.3.7 矩陣函數(shù)的解析定義
6.3.8 拉格朗日—西勒維斯特(Lagrange?Sylvester)定理與說明
6.3.9 矩陣函數(shù)展開成矩陣冪級數(shù)
6.3.10 解一階線性常系數(shù)微分方程組
6.4 解題方法指導(dǎo)
6.5 內(nèi)容結(jié)構(gòu)框圖
6.6 典型題剖析
6.7 答疑解惑
6.8 《教材》習題全解
6.9 自測試題及解答
自測試題一
自測試題一解答
自測試題二
自測試題二解答
第7章 廣義逆矩陣
7.1 內(nèi)容提要
7.2 基本教學要求
7.3 概念、結(jié)論與相關(guān)說明
7.3.1 廣義逆矩陣A -和相容線性方程組的解
7.3.2 廣義逆矩陣A -m和相容線性方程組的極小范數(shù)解
7.3.3 廣義逆矩陣A -l和不相容線性方程組的最小二乘解
7.3.4 廣義逆矩陣A +和不相容線性方程組的極小最小二乘解
7.4 解題方法指導(dǎo)
7.5 內(nèi)容結(jié)構(gòu)框圖
7.6 典型題剖析
7.7 答疑解惑
7.8 《教材》習題全解
7.9 自測試題及解答
自測試題一
自測試題一解答
自測試題二
自測試題二解答
第8章 綜合測試題及解答
測試題一
測試題一答案
測試題二
測試題二答案
測試題三
測試題三答案
測試題四
測試題四答案
測試題五
測試題五答案
測試題六
測試題六答案
主要參考書目
前 言
20世紀50年代后在近代數(shù)學、工程技術(shù)、信息科技、經(jīng)濟理論和管理科學中都大量用到矩陣這個數(shù)學工具,發(fā)展到今天,關(guān)于矩陣已形成一整套的理論與方法,內(nèi)容非常豐富,產(chǎn)生了數(shù)學的一個重要分支——矩陣論。隨著現(xiàn)代化科技發(fā)展,特別是計算機技術(shù)的發(fā)展,為矩陣論的研究開辟了更加廣闊的前景。因此對于高等理工科院校研究生、本科生來說,“矩陣論”已成為必須學習的數(shù)學基礎(chǔ)知識。國家教育部制定了研究生開設(shè)“矩陣論”課程的教學大綱,提出教學基本要求。我們根據(jù)多年教學實踐與體會,參照教育部頒布的教學大綱和基本要求編寫了《矩陣理論與方法》研究生教材,于2006年由電子工業(yè)出版社正式出版,并于2008年經(jīng)北京信息科技大學推薦參評,被北京市教育委員會評為“北京高等教育精品教材”。
“矩陣論”課程概念多且抽象,結(jié)論多且煩雜,算法多且技巧性強,教學思維方式也獨特,學生學起來往往感到困難多, 為了能引導(dǎo)學生克服上述困難并能使學生全面理解教學內(nèi)容,掌握解題技巧,提高分析能力,我們編寫了這本“矩陣論”課程的學習指導(dǎo)書。為了有針對性地解決讀者學習中的困難,我們力求使這本學習指導(dǎo)書的編寫具有以下特色。
(1) 歸納概念與結(jié)論時附加說明。每章在對一些主要概念、重要結(jié)論作系統(tǒng)歸納后,加【說明】給出言簡意賅地概括、深入淺出地表述、切中要害的指點,使讀者領(lǐng)悟知識更深刻、思路更開闊。
(2) 解題方法系統(tǒng)化。對50類問題的常用計算方法給出條理清晰的步驟、程序,使讀者見題后能熟練地按步計算,較快得到準確結(jié)果。
(3) 知識結(jié)構(gòu)框圖化。每章都附有知識結(jié)構(gòu)框圖,用簡單明了的方框及連線標示出全章重點知識及它們的內(nèi)在聯(lián)系,使讀者能一目了然地抓住各章內(nèi)容的重點、清晰地理清知識之間的內(nèi)在聯(lián)系。
(4) 對典型題加以剖析、解答與評注。列舉了88個典型例題,每個例題解題前都有【分析】,部分例題解題后加有【評注】,使讀者在解題前學會找方法、找思路;解題后得體會、有心得,還有一些例題給出多種解題方法,也會使讀者解題技巧得到提高。
(5) 精選難題答疑解惑。全書篩選出了讀者在學習中可能遇到的85個疑難或有疑問的問題,在解答過程中引導(dǎo)讀者不斷解決疑問、清除困惑,使難題被抽絲剝繭般得以解決。
(6)對教材《矩陣理論與方法》(第二版)中各章精選出的共125道習題,都做了詳細的解答。這對廣大讀者來說,也是復(fù)習、迎考的重要參考資料。
(7) 給出覆蓋知識全面的測試題。每章配有難度不同的兩套自測試題,全書配有難度不同的六套綜合測試題。測試題重視融會貫通、靈活運用,并都附有參考解答和標準答案。題型多、知識面廣,能有效地檢驗學習效果,提高讀者分析解決問題的能力。
本指導(dǎo)書在章節(jié)體系、主要符號,以及定理、定義的序號方面大部分與電子工業(yè)出版社出版“北京高等教育精品教材”《矩陣理論與方法》(第二版)保持一致,方便讀者配套使用。本書各章在引用此教材時,簡寫《教材》。同時由于編寫的指導(dǎo)書是依據(jù)了教育部制定的教學大綱,并在主要內(nèi)容上注意了與全國大多數(shù)高等院校使用的矩陣論教材保持一致,因此本指導(dǎo)書對使用其他矩陣論教材學習的讀者也能起到很好的輔導(dǎo)作用。對于從事實際工作的工程技術(shù)人員、從事矩陣論教學工作的教師及參加博士生入學矩陣論課程考試的有關(guān)人員都有一定的參考價值。
本指導(dǎo)書的內(nèi)容結(jié)構(gòu)在目錄中已清楚列出,在此不再重述。每章只在第3節(jié)列出子目錄,既簡單明了,也便于讀者了解在其他各節(jié)包含哪些內(nèi)容。
本指導(dǎo)書適用輔導(dǎo)60學時左右的“矩陣論”課程教學,若因?qū)W時所限可以選用。
本指導(dǎo)書分為8章,由吳昌愨(第1,第5章)、魏洪增(第3,第7章)、劉向麗(第4章)、尤彥玲(第6章)、孫妍(第2章)分工編寫,第8章在大家編寫的基礎(chǔ)上由劉向麗與孫妍整理編撰。全書由吳昌愨、魏洪增兩位教授及劉向麗三位教授(中央財經(jīng)大學)統(tǒng)稿。
本指導(dǎo)書在編寫過程中參考了一些兄弟院校作者編寫的書籍,受到不少啟示,指導(dǎo)書的出版得到了電子工業(yè)出版社陳曉莉編輯的大力支持,編者在此一并表示衷心感謝。
張誼濱、汪恩松、白小亮、蔣強、丁曉宇、汪翔6位同志為本書各章例題、習題、綜合測試題的驗算、內(nèi)容校對、排版打印等做了大量工作,編者在此也致以真誠謝意。
限于水平、書中不足之處難免,敬請廣大讀者批評指正。
編 者
2013年9月于北京