《計算智能:從概念到實現(英文版)》面向智能系統學科的前沿領域,系統地討論了計算智能的理論、技術及其應用,比較全面地反映了計算智能研究和應用的最新進展。書中涵蓋了模糊控制、神經網絡控制、進化計算以及其他一些技術及應用的內容。《計算智能:從概念到實現(英文版)》提供了大量的實用案例,重點強調實際的應用和計算工具,這些對于計算智能領域的進一步發展是非常有意義的。《計算智能:從概念到實現(英文版)》取材新穎,內容深入淺出,材料豐富,理論密切結合實際,具有較高的學術水平和參考價值。
《計算智能:從概念到實現(英文版)》可作為高等院校相關專業高年級本科生或研究生的教材及參考用書,也可供從事智能科學、自動控制、系統科學、計算機科學、應用數學等領域研究的教師和科研人員參考。
Russell C.Eberhart,普度大學電子與計算機工程系主任,IEEE會士。與James Kennedy共同提出了粒子群優化算法。曾任IEEE神經網絡委員會的主席。除了本書之外。他還著有《群體智能》(*版由人民郵電出版社出版)等。
Yuhui Shi(史玉回),國際計算智能領域專家,現任Journal of Swarm Intelligence編委,IEEE CIS群體智能任務組主席,西交利物浦大學電子與電氣工程系教授。1992年獲東南大學博士學位,先后在美國、韓國、澳大利亞等地從事研究工作,曾任美國電子資訊系統公司專家長達9年。他還是《群體智能》一書的作者之一。
chapter one Foundations
Definitions
Biological Basis for Neural Networks
Neurons
Biological versus Artificial Neural Networks
Biological Basis for Evolutionary Computation
Chromosomes
Biological versus Artificial Chromosomes
Behavioral Motivations for Fuzzy Logic
Myths about Computational Intelligence
Computational Intelligence Application Areas
Neural Networks
Evolutionary Computation
Fuzzy Logic
Summary
Exercises
chapter two Computational Intelligence
Adaptation
Adaptation versus Learning
Three Types of Adaptation
Three Spaces of Adaptation
Self-organization and Evolution
Evolution beyond Darwin
Historical Views of Computational Intelligence
Computational Intelligence as Adaptation and Self-organization
The Ability to Generalize
Computational Intelligence and Soft Computing versus Artificial Intelligence and Hard Computing
Summary
Exercises
chapter three Evolutionary Computation Concepts and Paradigms
History of Evolutionary Computation
Genetic Algorithms
Evolutionary Programming
Evolution Strategies
Genetic Programming
Particle Swarm Optimization
Toward Unification
Evolutionary Computation Overview
EC Paradigm Attributes
Implementation
Genetic Algorithms
Overview of Genetic Algorithms
A Sample GA Problem
Review of GA Operations in the Simple Example
Schemata and the Schema Theorem
Comments on Genetic Algorithms
Evolutionary Programming
Evolutionary Programming Procedure
Finite State Machine Evolution for Prediction
Function Optimization
Comments on Evolutionary Programming
Evolution Strategies
Selection
Key Issues in Evolution Strategies
Genetic Programming
Particle Swarm Optimization
Developments
Resources
Summary
Exercises
chapter four Evolutionary Computation Implementations
Implementation Issues
Homogeneous versus Heterogeneous Representation
Population Adaptation versus Individual Adaptation
Static versus Dynamic Adaptation
Flowcharts versus Finite State Machines
Handling Multiple Similar Cases
Allocating and Freeing Memory Space
Error Checking
Genetic Algorithm Implementation
Programming Genetic Algorithms
Running the GA Implementation
Particle Swarm Optimization Implementation
Programming the PSO Implementation
Programming the Co-evolutionary PSO
Running the PSO Implementation
Summary
Exercises
chapter five Neural Network Concepts and Paradigms
Neural Network History
Where Did Neural Networks Get Their Name?
The Age of Camelot
The Dark Age
The Renaissance
The Age of Neoconnectionism
The Age of Computational Intelligence
What Neural Networks Are andWhy They Are Useful
Neural Network Components and Terminology
Terminology
Input and Output Patterns
NetworkWeights
Processing Elements
Processing Element Activation Functions
Neural Network Topologies
Terminology
Two-layer Networks
Multilayer Networks
Neural Network Adaptation
Terminology
Hebbian Adaptation
Competitive Adaptation
Multilayer Error Correction Adaptation
Summary of Adaptation Procedures
ComparingNeuralNetworks and Other Information ProcessingMethods
Stochastic Approximation
Kalman Filters
Linear and Nonlinear Regression
Correlation
Bayes Classification
Vector Quantization
Radial Basis Functions
Computational Intelligence
Preprocessing
Selecting Training, Test, and Validation Datasets
Preparing Data
Postprocessing
Denormalization of Output Data
Summary
Exercises
chapter six Neural Network Implementations
Implementation Issues
Topology
Back-propagation Network Initialization and Normalization
LearningVector Quanti