《一元函數(shù)微積分與線性算子》主要介紹一元函數(shù)的極限(limit)、導(dǎo)數(shù)(derivative)、積分(integral)、微分方程(differentialequations)和線性算子(linearoperator)的基本概念和理論,并給出與這些概念相關(guān)的自主招生考試試題的解析與提高練習(xí)。《一元函數(shù)微積分與線性算子》由淺入深,并兼顧高中生參加大學(xué)自主招生內(nèi)容研討,編寫方法上結(jié)合雙語課程的特點(diǎn),探索如何組織雙語教材。《一元函數(shù)微積分與線性算子》可供準(zhǔn)備參加自主招生考試的高中生、高中教師、大學(xué)數(shù)學(xué)和相關(guān)專業(yè)方向的大學(xué)生以及從事雙語課程學(xué)習(xí)與教學(xué)的高校教師閱讀和參考。
前言
Chapter 1 極限(Limits)
1.1 極限概念fThe Notion of Limits)
1.2 極限的性質(zhì)與運(yùn)算(Properties and Rules of Limits)
1.3 極限的存在性(Existence of Limits)
1.4 函數(shù)的連續(xù)性(Continuity of Functions)
1.5 應(yīng)用(Applications)
1.6 習(xí)題(Exercises)
Chapter 2 導(dǎo)數(shù)(Derivatives)
2.1 導(dǎo)數(shù)概念(The Notion of Derivatives)
2.2 求導(dǎo)法則(Rules for Finding Derivatives)
2.3 泰勒公式(Taylor’S Formula)
2.4 微分中值定理(The Mean Value Theorems for Derivatives)
2.5 應(yīng)用(Applications)
2.6 習(xí)題(Exercises)
Chapter 3 積分(Integrals)
3.1 不定積分概念(The Notion of Indefinite Integrals)
3.2 求不定積分法則(Rules for Finding Indefinite Integrals)
3.3 微積分基本定理(The Fundamental Theorems of Calculus)
3.4 求定積分法則(Rules for Finding Definite Integrals)
3.5 應(yīng)用(Applications)
3.6 習(xí)題fExercises)
Chapter 4 微分方程(Differential Equations)
4.1 微分方程概念fThe Notion of Differential Equations)
4.2 可分離變量的微分方程(Separable Differential Equations)
4.3 可降階的高階微分方程(Higher Order Differential Equations Turned to Lower Order Differential Equations
4.4 線性微分方程解的結(jié)構(gòu)(The Structure of the Solutions of the Linear Differential Equations
4.5 習(xí)題(Exercises)
Chapter 5 線性算子(Linear Operators)
5.1 基本概念與性質(zhì)(The Notions and Properties)
5.2 連續(xù)算予(Continuous Operators)
5.3 應(yīng)用(Applications)
參考文獻(xiàn)